
AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

CHW 469 : Embedded Systems

Instructor:
Dr. Ahmed Shalaby

http://bu.edu.eg/staff/ahmedshalaby14#

http://bu.edu.eg/staff/ahmedshalaby14

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

I/O Ports in AVR

The AVR microcontroller

and embedded

systems
using assembly and c

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Topics

◼ AVR pin out

◼ The structure of I/O pins

◼ I/O programming

◼ Bit manipulating

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

40 PIN DIP

10

11

1

2

3

4

5

6

7

8

9

12

13

14

15

16

17

18

19

20

(XCK/T0) PB0

(T1) PB1

(INT2/AIN0) PB2

(OC0/AIN1) PB3

(SS) PB4

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

VCC

XTAL2

GND

XTAL1

(RXD) PD0

(TXD) PD1

(INT0) PD2

(INT1) PD3

(OC1B) PD4

(OC1A) PD5

(ICP) PD6

MEGA32

31

30

40

39

38

37

36

35

34

33

32

29

28

27

26

25

24

23

22

21

PA0 (ADC0)

PA1 (ADC1)

PA2 (ADC2)

PA3 (ADC3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AGND

PC7 (TOSC2)

AVCC

PC6 (TOSC1)

PC5 (TDI)

PC4 (TDO)

PC3 (TMS)

PC2 (TCK)

PC1 (SDA)

PC0 (SCL)

PD7 (OC2)

ATmega16/mega32 pinout

1. Vital Pins:

1. Power
◼ VCC

◼ Ground

2. Crystal
◼ XTAL1

◼ XTAL2

3. Reset

2. I/O pins

• PORTA, PORTB,
PORTC, and PORTD

3. Internal ADC pins

• AREF, AGND, AVCC

+5 V

+5 V

+5 V

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Mega32/Mega16

(XCK/T0) PB0

(T1) PB1

(INT2/AIN0) PB2

(OC0/AIN1) PB3

(SS) PB4

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

VCC

XTAL2

GND

XTAL1

(RXD) PD0

(TXD) PD1

(INT0) PD2

(INT1) PD3

(OC1B) PD4

(OC1A) PD5

(ICP) PD6

PA0 (ADC0)

PA1 (ADC1)

PA2 (ADC2)

PA3 (ADC3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AGND

PC7 (TOSC2)

AVCC

PC6 (TOSC1)

PC5 (TDI)

PC4 (TDO)

PC3 (TMS)

PC2 (TCK)

PC1 (SDA)

PC0 (SCL)

PD7 (OC2)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

PORTA
PINA

DDRA

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

P
O

R
TB

D
D

R
B

P
IN

B

The structure of IO pins

PORTx.n

PINx.n

DDRx.n

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Mega32/Mega16

(XCK/T0) PB0

(T1) PB1

(INT2/AIN0) PB2

(OC0/AIN1) PB3

(SS) PB4

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

VCC

XTAL2

GND

XTAL1

(RXD) PD0

(TXD) PD1

(INT0) PD2

(INT1) PD3

(OC1B) PD4

(OC1A) PD5

(ICP) PD6

PA0 (ADC0)

PA1 (ADC1)

PA2 (ADC2)

PA3 (ADC3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AGND

PC7 (TOSC2)

AVCC

PC6 (TOSC1)

PC5 (TDI)

PC4 (TDO)

PC3 (TMS)

PC2 (TCK)

PC1 (SDA)

PC0 (SCL)

PD7 (OC2)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

PORTA
PINA

DDRA

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

P
O

R
TB

D
D

R
B

P
IN

B

The structure of IO pins

DDRx:

PORTx:

PINx:

01234567

01234567

01234567

Px7 Px6 Px5 Px4 Px3 Px2 Px1 Px0

PORTx.n

PINx.n

DDRx.n

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Mega32/Mega16

(XCK/T0) PB0

(T1) PB1

(INT2/AIN0) PB2

(OC0/AIN1) PB3

(SS) PB4

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

VCC

XTAL2

GND

XTAL1

(RXD) PD0

(TXD) PD1

(INT0) PD2

(INT1) PD3

(OC1B) PD4

(OC1A) PD5

(ICP) PD6

PA0 (ADC0)

PA1 (ADC1)

PA2 (ADC2)

PA3 (ADC3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AGND

PC7 (TOSC2)

AVCC

PC6 (TOSC1)

PC5 (TDI)

PC4 (TDO)

PC3 (TMS)

PC2 (TCK)

PC1 (SDA)

PC0 (SCL)

PD7 (OC2)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

PORTA
PINA

DDRA

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

P
O

R
TB

D
D

R
B

P
IN

B

The structure of IO pins

DDRx:

PORTx:

PINx:

01234567

01234567

01234567

Px7 Px6 Px5 Px4 Px3 Px2 Px1 Px0

PORTx.n

PINx.n

DDRx.n Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example 1

◼ Write a program that makes all the pins of
PORTA one.

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

Mega32/Mega16

(XCK/T0) PB0

(T1) PB1

(INT2/AIN0) PB2

(OC0/AIN1) PB3

(SS) PB4

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

VCC

XTAL2

GND

XTAL1

(RXD) PD0

(TXD) PD1

(INT0) PD2

(INT1) PD3

(OC1B) PD4

(OC1A) PD5

(ICP) PD6

PA0 (ADC0)

PA1 (ADC1)

PA2 (ADC2)

PA3 (ADC3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AGND

PC7 (TOSC2)

AVCC

PC6 (TOSC1)

PC5 (TDI)

PC4 (TDO)

PC3 (TMS)

PC2 (TCK)

PC1 (SDA)

PC0 (SCL)

PD7 (OC2)

DDRA
PORTA

PINA

D
D

R
B

P
IN

B

P
O

R
TB

DDRC
PORTC

PINC

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

DDRA:

PORTA:

.INCLUDE “M32DEF.INC”

LDI R20,0xFF ;R20 = 11111111 (binary)

OUT PORTA,R20 ;PORTA = R20

OUT DDRA,R20 ;DDRA = R20

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example 2

◼ The following code will toggle all 8 bits of Port B
forever with some time delay between “on” and
“off” states:

LDI R16,0xFF ;R16 = 0xFF = 0b11111111

OUT DDRB,R16 ;make Port B an output port (1111 1111)

L1: LDI R16,0x55 ;R16 = 0x55 = 0b01010101

OUT PORTB,R16 ;put 0x55 on port B pins

CALL DELAY

LDI R16,0xAA ;R16 = 0xAA = 0b10101010

OUT PORTB,R16 ;put 0xAA on port B pins

CALL DELAY

RJMP L1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example 3

◼ A 7-segment is connected to PORTA. Display 1 on
the 7-segment.

ATmega32

8
PORTC

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

0

1

2

3

5
6

4

1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 0

DDRC

:PORTC:

.INCLUDE “M32DEF.INC”

LDI R20,0x06 ;R20 = 00000110 (binary)

OUT PORTC,R20 ;PORTC = R20

LDI R20,0xFF ;R20 = 11111111 (binary)

OUT DDRC,R20 ;DDRC = R20

L1: RJMP L1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example 4

◼ A 7-segment is connected to PORTA. Display 3 on
the 7-segment.

ATmega32

8
PORTC

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

0

1

2

3

5
6

4

1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1

DDR:

PORTC:

.INCLUDE “M32DEF.INC”

LDI R20,0x4F ;R20 = 01001111 (binary)

OUT PORTC,R20 ;PORTC = R20

LDI R20,0xFF ;R20 = 11111111 (binary)

OUT DDRC,R20 ;DDRC = R20

L1: RJMP L1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example 5: Input

◼ The following code gets the data present at the pins of port C and
sends it to port B indefinitely, after adding the value 5 to it:

.INCLUDE "M32DEF.INC"

LDI R16,0x00 ;R16 = 00000000 (binary)

OUT DDRC,R16 ;make Port C an input port

LDI R16,0xFF ;R16 = 11111111 (binary)

OUT DDRB,R16 ;make Port B an output port(1 for Out)

L2: IN R16,PINC ;read data from Port C and put in R16

LDI R17,5

ADD R16,R17 ;add 5 to it

OUT PORTB,R16 ;send it to Port B

RJMP L2 ;continue forever

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Pull-up resistor

PINx.n

vcc

PORTx.n
1 = Close

0 = Open

pin n of

port x

Inside the

AVR chip

Outside the

AVR chip
Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

P

QD

Q

Q D

RRx

CLKI/O

WR PORTxn

WR DDRxn

DATA BUS

RDx

PORTxn

DDRxn
Q D

Q CLK

RESET

CLKQ

PUD

RESET

RPx

QD

QL
N

RESETRESET

PINxn

Pxn

Sleep

SYNCHRONIZER

The structure of IO pins

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example 6

◼ Write a program that continuously sends out to
Port C the alternating values of 0x55 and 0xAA.

.INCLUDE "M32DEF.INC"

LDI R16,0xFF ;R16 = 11111111 (binary)

OUT DDRC,R16 ;make Port C an output port

L1: LDI R16,0x55 ;R16 = 0x55

OUT PORTC,R16 ;put 0x55 on Port C pins

LDI R16,0xAA ;R16 = 0xAA

OUT PORTC,R16 ;put 0xAA on Port C pins

RJMP L1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example 7

◼ Write a program that reads
from port A and writes it to
port B.

40 PIN DIP

10

11

1

2

3

4

5

6

7

8

9

12

13

14

15

16

17

18

19

20

(XCK/T0) PB0

(T1) PB1

(INT2/AIN0) PB2

(OC0/AIN1) PB3

(SS) PB4

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

VCC

XTAL2

GND

XTAL1

(RXD) PD0

(TXD) PD1

(INT0) PD2

(INT1) PD3

(OC1B) PD4

(OC1A) PD5

(ICP) PD6

MEGA32

31

30

40

39

38

37

36

35

34

33

32

29

28

27

26

25

24

23

22

21

PA0 (ADC0)

PA1 (ADC1)

PA2 (ADC2)

PA3 (ADC3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AGND

PC7 (TOSC2)

AVCC

PC6 (TOSC1)

PC5 (TDI)

PC4 (TDO)

PC3 (TMS)

PC2 (TCK)

PC1 (SDA)

PC0 (SCL)

PD7 (OC2)

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

Out 0

pull-up

high impedance

PORTx

Out 1

0

1

D
D

R
x

0 1

.INCLUDE “M32DEF.INC”

LDI R20,0x0 ;R20 = 00000000 (binary)

OUT DDRA,R20 ;DDRA = R20

LDI R20,0xFF ;R20 = 11111111 (binary)

OUT DDRB,R20 ;DDRB = R20

L1: IN R20,PINA ;R20 = PINA

OUT PORTB,R20 ;PORTB = R20

RJMP L1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

I/O bit manipulation programming

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

SBI and CBI instructions

◼ SBI (Set Bit in IO register)

◼ SBI ioReg, bit ;ioReg.bit = 1

◼ Examples:

◼ SBI PORTD,0 ;PORTD.0 = 1

◼ SBI DDRC,5 ;DDRC.5 = 1

◼ CBI (Clear Bit in IO register)

◼ CBI ioReg, bit ;ioReg.bit = 0

◼ Examples:

◼ CBI PORTD,0 ;PORTD.0 = 0

◼ CBI DDRC,5 ;DDRC.5 = 0

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ Write a program that toggles PORTA.4
continuously.

.INCLUDE “M32DEF.INC”

SBI DDRA,4

L1: SBI PORTA,4

CBI PORTA,4

RJMP L1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ An LED is connected to each pin of Port D. Write a
program to turn on each LED from pin D0 to pin D7. Call
a delay module before turning on the next LED.

.INCLUDE "M32DEF.INC"

LDI R20, 0xFF

OUT DDRD, R20 ;make PORTD an output port

SBI PORTD,0 ;set bit PD0

CALL DELAY ;delay before next one

SBI PORTD,1 ;turn on PD1

CALL DELAY ;delay before next one

SBI PORTD,2 ;turn on PD2

CALL DELAY

SBI PORTD,3

CALL DELAY

SBI PORTD,4

CALL DELAY

SBI PORTD,5

CALL DELAY

SBI PORTD,6

CALL DELAY

SBI PORTD,7

CALL DELAY

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

SBIC and SBIS

◼ SBIC (Skip if Bit in IO register Cleared)

◼ SBIC ioReg, bit ; if (ioReg.bit = 0) skip next instruction

◼ Example:
SBIC PORTD,0 ;skip next instruction if PORTD.0=0

INC R20

LDI R19,0x23

◼ SBIS (Skip if Bit in IO register Set)

◼ SBIS ioReg, bit ; if (ioReg.bit = 1) skip next instruction

◼ Example:
SBIS PORTD,0 ;skip next instruction if PORTD.0=1

INC R20

LDI R19,0x23

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ Write a program to perform the following:

◼ (a) Keep monitoring the PB2 bit until it becomes HIGH;

◼ (b) When PB2 becomes HIGH, write value $45 to Port C,
and also send a HIGH-to-LOW pulse to PD3.

.INCLUDE "M32DEF.INC"

CBI DDRB, 2 ;make PB2 an input

SBI PORTB,2

LDI R16, 0xFF

OUT DDRC, R16 ;make Port C an output port

SBI DDRD, 3 ;make PD3 an output

AGAIN: SBIS PINB, 2 ;Skip if Bit PB2 is HIGH

RJMP AGAIN ;keep checking if LOW

LDI R16, 0x45

OUT PORTC, R16 ;write 0x45 to port C

SBI PORTD, 3 ;set bit PD3 (H-to-L)

CBI PORTD, 3 ;clear bit PD3

HERE: RJMP HERE

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ A switch is connected to pin
PB0 and an LED to pin PB7.
Write a program to get the
status of SW and send it to
the LED.

PB0

PB7

AVR4.7k

Switch

VCC

270

LED

.INCLUDE "M32DEF.INC"

CBI DDRB,0 ;make PB0 an input

SBI DDRB,7 ;make PB7 an output

AGAIN: SBIC PINB,0 ;skip next if PB0 is clear

RJMP OVER ;(JMP is OK too)

CBI PORTB,7

RJMP AGAIN ;we can use JMP too

OVER: SBI PORTB,7

RJMP AGAIN ;we can use JMP too

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Arithmetic and Logic
Chapter 5

The AVR microcontroller

and embedded

systems
using assembly and c

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Objectives

• The concept of signed numbers and
2’complement

• Addition and subtraction instructions

• Carry and overflow

• Logical instruction and masking

• Compare instruction and branching

• Shift, Rotate and Data serialization

• BCD, Packed BCD and ASCII conversion.

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

ADD instructions

ADD Rd,Rr ;Rd = Rd + Rr (Direct or immediate are not supported)

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

ADD instructions

ADD Rd,Rr ;Rd = Rd + Rr (Direct or immediate are not supported)

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

ADC instructions

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

SUB instruction

SUB Rd,Rr ;Rd = Rd - Rr (immediate are not supported)

SUB Rd,Rr ; Rd = Rd – K

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

SBC instruction

SBC Rd,Rr ;Rd = Rd – Rr-C (immediate are not supported)

SBIc Rd,Rr ;Rd = Rd – K-C

27 62 (H)

- 11 96 (H)

11 CC (H)

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Multiplication and Division

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Multiplication and Division

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Logic Instructions

AND Rd,Rr ;Rd = Rd AND Rr

OR Rd,Rr ;Rd = Rd OR Rr

EOR Rd,Rr ;Rd = Rd XOR Rr (immediate are not supported)

COM Rd,Rr ;Rd = 1’ Complement of Rd (11111111 – Rd)

NEG Rd,Rr ;Rd = 2’ Complement of Rd (100000000 – Rd)

• AND is used to clear an specific bit/s of a byte

• OR is used to set an specific bit/s of a byte

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Setting and Clearing bits

AND Rd,Rr ;Rd = Rd AND Rr

OR Rd,Rr ;Rd = Rd OR Rr

EOR Rd,Rr ;Rd = Rd XOR Rr (immediate are not supported)

COM Rd,Rr ;Rd = 1’ Complement of Rd (11111111 – Rd)

NEG Rd,Rr ;Rd = 2’ Complement of Rd (100000000 – Rd)

• AND is used to clear an specific bit/s of a byte

• OR is used to set an specific bit/s of a byte

ORAND

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Branch and CP Instructions

CP Rd,Rr ;Rd – Rr (only flags are set)

• BRVC is used to branch when oVerflow is clear to zero

• BRVS is used to branch when oVerflow is set to one

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

ROR instruction

In ROR, as bits are rotated from left to right, the carry flag enters the MSB

and the LSB exits to the carry flag. In other words, in ROR the C is moved to

the MSB, and the LSB is moved to the C.

CLC ;make C = 0 (carry is 0)

LDI R20 , 0x26 ;R20 = 0010 0110

ROR R20 ;R20 = 0001 0011 C = 0

ROR R20 ;R20 = 0000 1001 C = 1

ROR R20 ;R20 = 1000 0100 C = 1

See what happens to 0010 0110 after running 3 ROR instructions:

ROR Rd ;Rd (only flags are set)

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

ROL instruction

ROL. In ROL, as bits are shifted from right to left, the carry flag enters the LSB and

the MSB exits to the carry flag. In other words, in ROL the C is moved to the LSB,

and the MSB is moved to the C.

SEC ;make C = 1 (carry is 0)

LDI R20,0x15 ;R20 = 0001 0101

ROL R20 ;R20 = 0010 1011 C = 0

ROL R20 ;R20 = 0101 0110 C = 0

ROL R20 ;R20 = 1010 1100 C = 0

ROL R20 ;R20 = 0101 1000 C = 1

ROR Rd ;Rd (only flags are set)

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

LSL instruction

In LSL, as bits are shifted from right to left,

0 enters the LSB and the MSB exits to the

carry flag. In other words, in LSL 0 is

moved to the LSB, and the

MSB is moved to the C.

LSL Rd ;logical shift left

this instruction multiplies content of the register by 2 assuming that after

LSL the carry flag is not set.

In the next code you can see what happens to 00100110 after running 3 LSL

instructions.

CLC ;make C = 0 (carry is 0)

LDI R20 , 0x26 ;R20 = 0010 0110(38) c = 0

LSL R20 ;R20 = 0100 1100(74) C = 0

LSL R20 ;R20 = 1001 1000(148) C = 0

LSL R20 ;R20 = 0011 0000(98) C = 1 as C=1 and content of R20

;is not multiplied by 2

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

In LSR, as bits are shifted from left to

right, 0 enters the MSB and the LSB exits

to the carry flag. In other words, in LSR

0 is moved to the MSB, and

the LSB is moved to the C.

this instruction divides content of the register by 2 and carry flag contains

the remainder of division.

In the next code you can see what happens to 0010 0110 after running 3 LSL

instructions.

LDI R20,0x26 ;R20 = 0010 0110 (38)

LSR R20 ;R20 = 0001 0011 (19) C = 0

LSR R20 ;R20 = 0000 1001 (9) C = 1

LSR R20 ;R20 = 0000 0100 (4) C = 1

ROR Rd ;Rd (only flags are set)

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

ASR Instruction

ASR means arithmetic shift right. ASR

instruction can divide signed number by 2.

In LSR, as bits are shifted from left to

right, MSB is held constant and the LSB

exits to the carry flag. In other words

MSB is not changed but is copied to D6,

D6 is moved to D5, D5 is moved to D4

and so on.

In the next code you can see what happens to 0010 0110 after running 5 ASL

instructions.

LDI R20 , 0D60 ;R20 = 1101 0000(-48) c = 0

LSL R20 ;R20 = 1110 1000(-24) C = 0

LSL R20 ;R20 = 1111 0100(-12) C = 0

LSL R20 ;R20 = 1111 1010(-6) C = 0

LSL R20 ;R20 = 1111 1101(-3) C = 0

LSL R20 ;R20 = 1111 1110(-1) C = 1

ROR Rd ;Rd (only flags are set)

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

BCD, Packed BCD and ASCII conversion.

•BCD

BCD1 BCD0

Packed BCD

BCD Codes

ASCII and BCD Codes for Digits 0–9

•ASCII Codes

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Packed BCD to ASCII conversion

To convert packed BCD to ASCII:

• you must first convert it to unpacked BCD.

• Then the unpacked BCD is tagged with 011 0000

(30H).

Packed BCD = 1001 0010

ACSII = 0011 1001 , 0011 0010

Un packed BCD = 0000 1001 , 0000 0010

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Advanced Assembly
Chapter 6

The AVR microcontroller

and embedded

systems
using assembly and c

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Topics

◼ Assembler directives

◼ Addressing modes

◼ Macro

◼ EEPROM memory

◼ Checksum

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Some Assembler directives

Example

+ LDI R20,5+3 ;LDI R20,8

- LDI R30,9-3 ;LDI R30,6

* LDI R25,5*7 ;LDI R25,35

/ LDI R19,8/2 ;LDI R19,4

Example

<< LDI R16, 0x10<<1 ;LDI R16,0x20

>> LDI R16, 0x8 >>2 ;LDI R16,0x2

Example

& LDI R20,0x50&0x10 ;LDI R20,0x10

| LDI R25,0x50|0x1 ;LDI R25,0x51

^ LDI R23,0x50^0x10 ;LDI R23,0x40

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

HIGH and LOW

LDI R20, LOW(0x1234)

LDI R21, HIGH(0x1234)

LDI R20, $34

LDI R21, $12

$1234

LOWHIGH

LDI R20, LOW(-200)

LDI R21, HIGH(-200)

LOWHIGH

-200 = $FF38

LDI R20, $FF

LDI R21, $38

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Single Register Addressing Mode

◼ Single Register Addressing Mode
The data could be in register, immediate, memory

◼ INC Rd

◼ INC R19

◼ DEC Rd

◼ DEC R23 ;R23 = R23 – 1

Rd

GPRs

d

31

0

4 bits12 bits

Op. Code

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Immediate Addressing Mode

(Single register with immediate)

◼ LDI Rd,K

◼ LDI R19,25

◼ SUBI Rd,K

◼ SUBI R23,5 ;R23 = R23 – 5

◼ ANDI Rd,K

◼ ANDI R21,0x15

Op. Code Rd

GPRs

d

31

0

4 bits8 bits4 bits

Immediate

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Two-register addressing mode

◼ ADD Rd,Rr

◼ ADD R26,R23

◼ SUB Rd,Rr

◼ LDI R20,R10

Op. Code Rd

GPRs

d

31

0

5 bits6 bits

Rr

5 bits

r

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Direct addressing mode

◼ LDS Rd,address

◼ LDS R19,0x313

Data Address

Data Space

RAMEND

0

16

Rr/RdOp. Code

015

1931 20

Note: RAMEND has been used to

represent the highest location in

data space.

◼ STS address,Rs

◼ STS 0x95,R19

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

I/O direct addressing mode

◼ OUT address, Rs

◼ OUT 0x70,R16

A

I/O Memory

A

63

05

Op. Code

015

Rr/Rd

◼ IN Rs,address

◼ IN R19,0x90

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Register indirect addressing mode

◼ LD Rd,X

◼ LD R24,X

◼ LD R19,Y

◼ LD R20,Z

◼ ST X,Rd

◼ ST X,R18

◼ ST Y,R20

X, Y, OR Z - REGISTER

Data Space

RAMEND

0015

Note: RAMEND has been used to represent

the highest location in data space.

15 XH XL
X – register : 7 0 7 0

0

R26R27

15 YH YL
Y – register : 7 0 7 0

0

R28R29

15 ZH ZL
Z – register : 7 0 7 0

0

R30R31

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ Write a program to copy the value $55 into
memory locations $140 to $144

LDI R19,0x5 ;R19 = 5 (R19 for counter)

LDI R16,0x55 ;load R16 with value 0x55 (value to be copied)

LDI YL,0x40 ;load the low byte of Y with value 0x40

LDI YH,0x1 ;load the high byte of Y with value 0x1

L1: ST Y,R16 ;copy R16 to memory location 0x140

INC YL ;increment the low byte of Y

DEC R19 ;decrement the counter

BRNE L1 ;loop until counter = zero

LDI YL,0x40

LDI YH,0x1
LDI YL,LOW(0x140)

LDI YH,HIGH(0x140)

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Auto-increment and Auto decrement

◼ Register indirect addressing with Post-increment

◼ LD Rd, X+

◼ LD R20,X+

◼ ST X+, Rs

◼ ST X+, R8

◼ Register indirect addressing with Pre-decrement

◼ LD Rd, -X

◼ LD R19,-X

◼ ST –X,R31

X, Y, OR Z - REGISTER

Data Space

RAMEND

0

015

+1

X, Y, OR Z - REGISTER

Data Space

RAMEND

0

015

+-1

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ Write a program to copy the value $55 into
memory locations $140 to $444

LDI R19,0x5 ;R19 = 5 (R19 for counter)

LDI R16,0x55 ;load R16 with value 0x55 (value to be copied)

LDI YL,LOW($140) ;load the low byte of Y with value 0x40

LDI YH,HIGH($140) ;load the high byte of Y with value 0x1

L1: ST Y+,R16 ;copy R16 to memory location Y

DEC R19 ;decrement the counter

BRNE L1 ;loop until counter = zero

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Register indirect with displacement

◼ STD Z+q,Rr ;store Rr into location Z+q

◼ STD Z+5,R20 ;store R20 in location Z+5

◼ LDD Rd, Z+q ;load from Z+q into Rd

◼ LDD R20, Z+8 ;load from Z+8 into R20

Y OR Z - REGISTER

Data Space

RAMEND

0

015

+

Op.

0

15

Rr/Rd q

561015

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Storing fixed data in flash memory

DATA1: .DB 28 ;DECIMAL(1C in hex)

DATA2: .DB 0b00110101 ;BINARY (35 in hex)

DATA3: .DB 0x39 ;HEX

DATA4: .DB 'Y' ;single ASCII char

DATA6: .DB "Hello ALI";ASCII string

DB >> Data directive to allocate data to ROM, 8 bit
fixed data

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Storing fixed data in flash memory

◼ LPM Rd, Z

◼ LPM R15, Z

◼ Example:

◼ LDI R30,0x80

◼ LDI R31,0

◼ LPM R18,Z ;read from the low byte of loc 0x40

◼ LPM Rd, Z+

◼ LPM R20,Z

Z - REGISTER

Program Memory

FLASHEND

0015
LSB

1

15

07815

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ Assume that ROM space starting at $500 contains the
message “The Promise of World Peace”. Write a program
to bring it into CPU one byte at a time and place the
bytes in RAM locations starting at $140.

.ORG 0 ;burn into ROM starting at 0

LDI ZL, LOW(MYDATA<<1) ;R30 = 00 low-byte addr

LDI ZH, HIGH(MYDATA<<1) ;R31 = 0A, high-byte addr

LDI XL, LOW(0x140) ;R26 = 40, low-byte RAM address

LDI XH, HIGH(0x140) ;R27 = 1, high-byte RAM address

AGAIN: LPM R16, Z+ ;read the table, then increment Z

CPI R16,0 ;compare R16 with 0

BREQ END ;exit if end of string

ST X+, R16 ;store R16 in RAM and inc X

RJMP AGAIN

END: RJMP END

.ORG 0x500 ;data burned starting at 0x500

MYDATA: .DB "The Promise of World Peace",0

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Macro

.MACRO INITSTACK

LDI R16,HIGH(RAMEND)

OUT SPH,R16

LDI R16,LOW(RAMEND)

OUT SPL,R16

.ENDMACRO

INITSTACK

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Macro

.MACRO LOADIO

LDI R20,@1

OUT @0,R20

.ENDMACRO

LOADIO DDRB,0xFF

LOADIO PORTB,0x55

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

EEPROM

◼ EEPROM is a place to store data. It is not deleted
when power is off

◼ ATmega32 has 1024 bytes of EEPROM

◼ In AVR 3 registers are dedicated to EEPROM

◼ EEARH:EEARL

◼ EEDR

◼ EECR

EEPROM

0

1023

EEDR

EEARH

015

EEARL

EECR

EEPROM Address Register

8

EEARH

Bit

EEARL

9101112131415

01234567

EEAR0EEAR1EEAR2EEAR3EEAR4EEAR5EEAR6EEAR7

EEAR8EEAR9------

Bit

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

EEPROM

◼ EEPROM is a place to store data. It is not deleted
when power is off

◼ ATmega32 has 1024 bytes of EEPROM

◼ In AVR 3 registers are dedicated to EEPROM

◼ EEARH:EEARL

◼ EEDR

◼ EECR

EEPROM

0

1023

EEDR

EEARH

015

EEARL

EECR

EEPROM Address Register

8

EEARH

Bit

EEARL

9101112131415

01234567

EEAR0EEAR1EEAR2EEAR3EEAR4EEAR5EEAR6EEAR7

EEAR8EEAR9------

Bit

EEPROM Data Register

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

EEPROM

◼ EEPROM is a place to store data. It is not deleted
when power is off

◼ ATmega32 has 1024 bytes of EEPROM

◼ In AVR 3 registers are dedicated to EEPROM

◼ EEARH:EEARL

◼ EEDR

◼ EECR

EEPROM

0

1023

EEDR

EEARH

015

EEARL

EECR

EEPROM Address Register

8

EEARH

Bit

EEARL

9101112131415

01234567

EEAR0EEAR1EEAR2EEAR3EEAR4EEAR5EEAR6EEAR7

EEAR8EEAR9------

Bit

EEPROM Data Register

EEPROM Control Register

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Reading from EEPROM

◼ 1. Wait until EEWE becomes zero.

◼ 2. Write new EEPROM address to EEAR (optional)

◼ 3. Set EERE to one.

◼ 4. Read EEPROM data from EEDR.

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Writing into EEPROM

◼ 1. Wait until EEWE becomes zero.

◼ 2. Write new EEPROM address to EEAR
(optional).

◼ 3. Write new EEPROM data to EEDR (optional).

◼ 4. Set EEMWE bit to one.

◼ 5. Within four clock cycles after setting EEMWE,
set EEWE to one.

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Writing into EEPROM

◼ 1. Wait until EEWE becomes zero.

◼ 2. Write new EEPROM address to EEAR
(optional).

◼ 3. Write new EEPROM data to EEDR (optional).

◼ 4. Set EEMWE bit to one.

◼ 5. Within four clock cycles after setting EEMWE,
set EEWE to one.

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Checksum

◼ To detect data corruption

◼ Calculating checksum byte:

◼ Add the bytes together and drop the carries

◼ Take the 2’s complement of the total sum

◼ Testing checksum

◼ Add the bytes together and drop the carries

◼ Add the checksum byte to the sum

◼ If the result is not zero, data is corrupted

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ Find the checksum byte for the followings:

$25, $62, $3F, $52

Solution:

$25

+ $62

+ $3F

+ $52

$1 18

Checksum byte = 2’s complement of $18 = $E8

AVR Microcontroller and Embedded System Using Assembly and C

Mazidi, Naimi, and Naimi

© 2011 Pearson Higher Education,

Upper Saddle River, NJ 07458. • All Rights Reserved.

Example

◼ The checksum byte is $E8. Test checksum for the
following data:

$25, $62, $3F, $52

Solution:

$25

+ $62

+ $3F

+ $52

+ $E8

$00 ➔ not corrupted

	Slide 1
	Slide 2: I/O Ports in AVR
	Slide 3: Topics
	Slide 4: ATmega16/mega32 pinout
	Slide 5: The structure of IO pins
	Slide 6: The structure of IO pins
	Slide 7: The structure of IO pins
	Slide 8: Example 1
	Slide 9: Example 2
	Slide 10: Example 3
	Slide 11: Example 4
	Slide 12: Example 5: Input
	Slide 13: Pull-up resistor
	Slide 14: The structure of IO pins
	Slide 15: Example 6
	Slide 16: Example 7
	Slide 17: I/O bit manipulation programming
	Slide 18: SBI and CBI instructions
	Slide 19: Example
	Slide 20: Example
	Slide 21: SBIC and SBIS
	Slide 22: Example
	Slide 23: Example
	Slide 24: Arithmetic and Logic Chapter 5
	Slide 25: Objectives
	Slide 26: ADD instructions
	Slide 27: ADD instructions
	Slide 28: ADC instructions
	Slide 29: SUB instruction
	Slide 30: SBC instruction
	Slide 31: Multiplication and Division
	Slide 32: Multiplication and Division
	Slide 33: Logic Instructions
	Slide 34: Setting and Clearing bits
	Slide 35: Branch and CP Instructions
	Slide 36: ROR instruction
	Slide 37: ROL instruction
	Slide 38: LSL instruction
	Slide 39
	Slide 40: ASR Instruction
	Slide 41: BCD, Packed BCD and ASCII conversion.
	Slide 42: Packed BCD to ASCII conversion
	Slide 43: Advanced Assembly Chapter 6
	Slide 44: Topics
	Slide 45: Some Assembler directives
	Slide 46: HIGH and LOW
	Slide 47: Single Register Addressing Mode
	Slide 48: Immediate Addressing Mode (Single register with immediate)
	Slide 49: Two-register addressing mode
	Slide 50: Direct addressing mode
	Slide 51: I/O direct addressing mode
	Slide 52: Register indirect addressing mode
	Slide 53: Example
	Slide 54: Auto-increment and Auto decrement
	Slide 55: Example
	Slide 56: Register indirect with displacement
	Slide 57: Storing fixed data in flash memory
	Slide 58: Storing fixed data in flash memory
	Slide 59: Example
	Slide 60: Macro
	Slide 61: Macro
	Slide 62: EEPROM
	Slide 63: EEPROM
	Slide 64: EEPROM
	Slide 65: Reading from EEPROM
	Slide 66: Writing into EEPROM
	Slide 67: Writing into EEPROM
	Slide 68: Checksum
	Slide 69: Example
	Slide 70: Example

